Polynomials and Collecting Like Terms

A term is the product of a coefficient and variable part

	Type equation here.				
$E X I$	$3 x$	$5 x^{2}$	11	$-l x$	$5 a b$

A polynomial is a collection of one or more terms joined by addition or subtraction

$$
E X / \quad 5 \mathrm{x}^{2} \quad 2 \mathrm{x}+(-1) \quad 3 \mathrm{x}^{2}+(-2 \mathrm{x})+1 \quad \mathrm{a}+(-2 \mathrm{~b})+\mathrm{c} \quad 54 \mathrm{x}^{3} \mathrm{y}^{2}+\left(-3 \mathrm{x}^{4} \mathrm{y}^{1}\right)
$$

BEWARE THE INVISIBLE 1 !!!
$x \rightarrow 1 x \quad-x \rightarrow-1 x \quad(x+4) \rightarrow 1(x+4) \quad-(x-3) \rightarrow-1(x-3)$
BE AWARE OF DIFFERENT STYLES THAT MEAN THE SAME THING
$-1 \leftarrow \rightarrow+(-1) \quad-\mathrm{x} \leftrightarrow \rightarrow+(-\mathrm{x}) \quad-4 \mathrm{x} \Leftarrow \rightarrow+(-4 \mathrm{x})$
Like terms have identical variable parts. Unlike terms have different variable parts.
EX/ Which of the following are "like terms"?

$$
\begin{array}{llllllllll}
5 \mathrm{x} & 7 \mathrm{xy} & -3 \mathrm{x} & 3.2 & 11 \mathrm{x}^{2} & \mathrm{x} & -4 \mathrm{x}^{2} & 3 \mathrm{x}^{3} & -3 \mathrm{xy} & \mathrm{x}^{2}
\end{array}
$$

Collecting like terms means grouping (by addition or subtraction) the like terms.

Only add/subtract the coefficients, do not change the variables.
PART 1/ Collect the like terms and write in the simplest way.
a) $2 x+3 x$
g) $4 c+(-1)+(-2 c)+4$
b) $4 x+(-1 x)$
h) $4 t^{2}+2+(-2 t)+t^{2}+3 t-1$
c) $2 x+1+(-3)+(-3 x)$
i) $3 \mathrm{~d}+(-2)+(-1 \mathrm{~d})+(-2 \mathrm{~d})$
d) $2 x^{2}+x^{2}-4 x^{2}$
j) $3-2 \mathrm{c}+2 \mathrm{c}^{2}-\mathrm{c}^{2}+\mathrm{c}+1$
e) $-x^{2}+2 x-2 x^{2}-4 x$
k) $2 x+2+2 x+3-4 x-2$
f) $4 c-2 c+3+c$

1) $-3 w+1+2 w^{2}+5 w-3$
m）$-3 r-2 r+r^{2}+r-3 r^{2}$
n）$(-3 y)+\left(-y^{2}\right)-4+y+3 y^{2}$

PART 2／Collect the like terms．
a） $7 m+5 m$
e）$x+y+(-z)+y+(-x y)+(-x)+(-z)$
b） $3 \mathrm{u}+2 \mathrm{v}+(-\mathrm{u})+(-6 \mathrm{v})$
f） $2 x^{2}-5-x^{2}-1 x^{2}+4 x+4$
c）$-x-8 y+6 x+11-4 y$
g）$(-3 x y)+(-2 x y)+x y$
d） $2 x^{3}+3 x^{4}+5 x^{3}-5 x^{4}$
h） $2 x^{2} y+3 x y^{2}-1 x y^{2}-4 x^{2} y$
i）$-3 \mathrm{r}^{2}+(-4 \mathrm{pr})+4 \mathrm{p}^{2}+(-7 \mathrm{pr})+\mathrm{r}^{2}+\left(-5 \mathrm{p}^{2}\right)$
j）$-2 r+4 x^{2}+3 x-1 r^{2}+(-3 r)+\left(-x^{2}\right)+r-4 x$

	$-x I-{ }_{2} \mu I-{ }_{2} x_{\varepsilon}^{l \nabla}$		
${ }_{2} \chi^{\prime} x Z+K_{z} x Z-(\mathrm{Y}$	Kxヵー（\％）	I－$\chi_{\text {7 }}$（f	K $X I-Z Z-K Z \quad$（
$z^{x} Z-{ }_{\varepsilon}{ }^{x} L$（p	II＋KZI $\chi_{\text {G }}$（0	$n Z+a_{7}-$（q	uZI（e

		$\nabla-K_{Z}-{ }_{Z} K_{Z}$（U	
$Z-M Z+{ }_{z} M Z \quad(I$	ε（ ${ }^{\text {r }}$		Z－（！
$\underline{L}+7 \mathrm{I}+{ }_{2} 7 \mathrm{~S}$（ 4	$\varepsilon+J$（ô	$\varepsilon+\nu \mathcal{L}$（f	$\begin{array}{r} \left(x_{Z}-\right)+{ }_{z} x_{\mathcal{E}}-\mathrm{IO} \\ x_{Z}-{ }_{z} x_{\mathcal{E}}-\quad(\partial \end{array}$
${ }_{2} x \tau-(p$	$\begin{gathered} (\mathrm{Z}-)+x \mathrm{I}-\mathrm{IO} \\ \mathrm{Z}-x \mathrm{I}- \end{gathered}$	$x \in \quad(\mathrm{q}$	x G（e

The distributive property states that:

$$
a(x+y)=a x+a y
$$

Example: $3(x+4)$
$=3 x+12$

Expand each of the following. Your final answer should have no brackets.

1. $2(x+1)$
2. $2(x+3)$
3) $3(x-1)$
4) $4(1+2 x)$
5) $-2(x-2)$
6) $-2(x+2)$
7) $-3(x+1)$
8) $-1(x+5)$
9) $2(1+3 x)$
10) $-3(x-1)$
11) $-2(2 x-1)$
12) $-2(3-x)$
13) $x(x+3)$
14) $x(2+x)$
15) $x(3 x-1)$
16) $x(4-2 x)$
17) $2 x(x+3)$
18) $2 x(3-x)$
19) $-2 x(x+1)$
20) $-3 x(2 x-1)$

PART A: Add the following polynomials.

1. $(x+1)+(3 x-1)$
2. $(4-2 x)+(-x+1)$
3. $(2 x-3)+(x-1)$
4. $\left(2 x^{2}+3 x-1\right)+\left(x^{2}-x+1\right)$

PART B: Expand the following. After expanding, the brackets should be gone.
5. $-(x+3)$
\qquad
6. $-(2-x)$
\qquad
PART C: Expand the following.
9. $3(x+1)$
\qquad
10. $-2(2 x+1)$
12. $x(-2 x+1)$
\qquad

PART D: Subtract the polynomials. Expand and collect, or "add the opposite"
13. $(x+2)-(2 x+1)$
15. $\left(2+x^{2}\right)-\left(3 x^{2}+1\right)$
14. $(3 x-1)-(2 x-1)$
16. $\left(2 x^{2}-2 x+3\right)-\left(-x^{2}-4 x+1\right)$
17. $(-2 x+4)-(6-2 x)$
19. $(5 y+2)-\left(2 y^{2}+3 y-1\right)$
18. $\left(3 x^{2}+2 x\right)-\left(2 x^{2}-2 x+1\right)$
20. $\left(-5 z^{2}+3 z-1\right)-\left(3 z^{2}-3 z-8\right)$

PART E: Expand and collect like terms.
21. $2(x+1)+3(x-1)$
24. $3(x-2)-2(2 x+1)$
22. $-2(x+2)+(4 x+3)$
25. $2 x(x-4)+x(x+3)$
23. $-2(2 x+1)+3(-1+2 x)$
26. $-3 z(z-2)-\left(z^{2}-2 z+5\right)$

ANSWERS ANSWERS ANSWERS!!!

$1.4 x$	$2.3 x-4$	$3 .-3 x+5$	$4.3 x^{2}+2 x$	$5 .-x-3$	$6 . x-2$	$7 .-2 x+3$
$8 .-x^{2}-4+3 x$	$9.3 x+3$	$10 .-4 x-2$	$11 .-2 x^{2}-2 x+6$	$12 \cdot-2 x^{2}+x$	$13 \cdot-x+1$	$14 . x$
$15 .-2 x^{2}+1$	$16.3 x^{2}+2 x+2$	$17 .-2$	$18 \cdot \mathrm{x}^{2}+4 \mathrm{x}-1$	$19 \cdot-2 \mathrm{y}^{2}+2 \mathrm{y}+3$	$20 .-8 \mathrm{z}^{2}+6 \mathrm{z}+7$	
$21.5 x-1$	$22.2 x-1$	$23.2 x-5$	$24 .-x-8$	$25 \cdot 3 \mathrm{x}^{2}-5 \mathrm{x}$	$26 \cdot-4 \mathrm{z}^{2}+8 \mathrm{z}-5$	

\qquad

Simplify each of the following. Use a different sheet of paper to show any steps.

1. $n+4-9-5 n$	2. $12 r-8-12$
3. $-2 x+11+6 x$	4. $12 r+5+3 r-5$
5. $4(1+9 x)$	6. $-6(x+4)$
7. $-8(1-5 x)$	8. $(1-7 n) \cdot 5$
9. $x(-2 x-3)$	10. $6 v(2 v+3)$
11. $(4+2 n)+(5 n+2)$	12. $\left(9+5 r^{2}+11 r\right)+\left(\begin{array}{lll} 9 r & -2 & -8 r^{2} \end{array}\right)$
13. $(5 a+4)-(5 a+3)$	14. $\left(3 a^{2}+1\right)-\left(4+2 a^{2}\right)$
15. $\left(-7 n^{2}+8 n-4\right)+\left(-11 n+2-14 n^{2}\right)$	16. $\left(8 k+k^{2}-6\right)-\left(-10 k+7-2 k^{2}\right)$
17. $3(x-4)+2(5+x)$	18. $3(x-2)+5$
19. $1+2(x+2)$	20. $3(y+1)+6(2-y)$
21. $2(y-3)-4(2 y+1)$	22. $x(x+4)+2(x-3)$
23. $2(b-a)+3(a+b)$	24. $-x^{2}-x(x-2)$
25. $2 a-(a-2 b)$	26. $4 x(x-3)-2 x(5-x)$

ANSWERS

$1 .-4 n-5$	$2.12 r-20$	$3.4 x+11$	$4.15 r$
$5.36 x+4$	$6 .-6 x-24$	$7.40 x-8$	$8 .-35 n+5$
$9 .-2 x^{2}-$	$10.12 v^{2}+18 v$	$11.7 n+6$	$12 .-3 r^{2}+20 r+7$
$3 x$		$15 .-21 n^{2}-3 n-2$	$16.3 k^{2}+18 k-13$
13.1	$14 . a^{2}-3$	$19.2 x+5$	$20 .-3 y+15$
$17.5 x-2$	$18.3 x-1$	$23 . a+5 b$	$24 .-2 x^{2}+2 x$
$21 .-6 y-10$	$22 . x^{2}+6 x-6$		
$25 . a+2 b$	$26.6 x^{2}-22 x$		

\qquad
The imaginary lines we call the x-axis (which is horizontal) and y-axis (which is vertical), chop the Cartesian plane into 4 quadrants. We use ordered pairs to locate points on the plane

1.

Mark the following points on the Cartesian plane.

2. State the coordinates of the points on the Cartesian plane.

$j)$
$k)$
$l)$
$m)$
$n)$
$o)$
$p)$
$q)$

\qquad

For each question and answer, identify the lines that could be eliminated. Use the lines above.

$\#$	Question	Answer	Eliminated
1.	Is the line increasing?	Yes	
2.	Does the line pass through the origin?	No	
3.	Is the line steep?	No	
4.	Is the line decreasing?	Yes	
5.	Is the line either horizontal or vertical?	Yes	
6.	Is the line increasing and steep?	Yes	
7.	Does the line have a positive y-intercept?	No	
8.	Can you see the x- intercept in the picture?	Yes	

In each case, I will give you two lines that remain. Write a question that would let you win the game.

Line 1	Line 2	Question

\square 	\square 	
\square 	\square - 	

For each question, draw three lines (one for yes, two for no). Use a ruler.

Line 1 (Yes!)	Line 2 (No!)	Line 3 (No!)	Question
 	\square 	 	Is the line steep and decreasing?
\square 	\square 	\square 	Does the line have a positive x-intercept and a positive y-intercept?
\square 	\square 	 	Does the line pass through 3 quadrants?

Steep	Not steep	Increasing	Decreasing
Vertical	Horizontal	x-intercept	y-intercept
Positive	Negative	Origin	Quadrant (1/2/3/4)
x-axis	y-axis		

\qquad

Slope - Introduction

In math, we have a way to determine/measure/represent the steepness of a line that connects two points. It is called "Slope", and it is can be found by finding the ratio of the vertical distance between two points to the horizontal distance between two points:

$$
\text { Slope }=\frac{\text { vertical distance }}{\text { horizontal distance }}=\frac{\text { rise }}{\text { run }}
$$

For the vertical distance ("rise")	For the horizontal distance ("run")
\rightarrow Moving upwards is positive	\rightarrow Moving from left to right is positive
\rightarrow Moving downwards is negative	\rightarrow Moving from right to left is negative

1. Find the slope between points A and B. Leave answers as reduced fractions ($\frac{1}{2}$ instead of $\frac{2}{4}$).
a.

e.

b.

f.

c.

g.

d.

h.

2. For each pair of graphs, find the slope from Point A to Point B. Compare your answers for each pair, then reflect. Remember to reduce your slopes to simplest form.

\qquad
Zukei Puzzles are logic puzzles originally created by a Japanese person named Naoki Inaba, and I have added a few of my own. In each case, you need to connect 3 or 4 of the dots to create the indicated shape. Note - there will be some MPM1D-related follow-up!
3.

Rectangle
4.

7.

Rhombus
2.

Square
5.

Square
8.

Trapezoid
3.

Rectangle
6.

Isosceles Right Triangle
9.

Parallelogram
10.
11.

Parallelogram
14.

17.

Square
20.

12.

15.

18.

21.

Parallelogram

$$
\text { Recall: } \text { Slope }=\frac{\text { vertical distance }}{\text { horizontal distance }}=\frac{\text { rise }}{\text { run }}
$$

1. Consider Zukei puzzles \#7, 11 and 21, which are all either parallelograms or rhombuses. Determine the slope of each side of each shape.

2. How many pairs of parallel sides does a parallelogram and rhombus have? How do your slopes from question \#1 support this?
3. Consider Zukei puzzles \#8, 18 and 19, which are all trapezoids. Determine the slope of each side of each shape. Remember to reduce each fraction.

4. How many pairs of parallel sides does a trapezoid have? How do your slopes from question \#3 support this?
5. Consider Zukei puzzles \#4, 15 and 17, which are all squares or rectangles. Determine the slope of each side of each shape. Remember to reduce each fraction.

6. How many pairs of parallel sides do squares and rectangles have? How do your slopes from question \#5 support this?
7. Squares and rectangles have sides that meet at 90°. We say the lines are \qquad .
Examine the slopes you determined in question \#5. Suggest how we might be able to tell whether lines are perpendicular from their slopes.
8. Determine the slopes for the rectangle in puzzle \#3 below. Do these slopes make sense given your response in question \#7? Why/why not?

9. Two students say they've found a right angle triangle in \#6. Use slopes to determine which is correct.

Solution \#1

Solution \#2

15
\qquad

How can we tell if lines are parallel?

How can we tell if two lines are perpendicular?

Working with Slopes - Parallel and Perpendicular

1. Write whether these slopes are parallel, perpendicular, or neither
a) $-\frac{2}{3}$ and $-\frac{4}{6}$
e) 5 and $\frac{1}{5}$
b) $\frac{-4}{3}$ and $\frac{3}{-4}$ \qquad f) $\frac{-1}{-5}$ and $\frac{1}{5}$
c) $\frac{4}{5}$ and $\frac{5}{4}$
g) 2 and undefined
d) 3 and $-\frac{1}{3}$ \qquad h) $\frac{1}{2}$ and 0.5
2. Here are the slopes of some lines.
$\frac{2}{3}$
a) Write all the slopes that are parallel
b) Write all the slopes that are perpendicular
3. Give a slope that is perpendicular to each of the following slopes:

a) $\mathrm{m}=\frac{2}{3}$	b) $\mathrm{m}=-\frac{4}{5}$	c) $\mathrm{m}=2$	d) $\mathrm{m}=0$

4. Use slopes to determine if the following sets of points form a parallelogram.

5. Use slopes to determine if the following points form a trapezoid.

\qquad

ON THIS PAGE, ONLY IDENTIFY POINTS FOR WHICH THE COORDINATES ARE INTEGERS, AND ONLY IDENTIFY POINTS THAT ARE ON THE GRID (THERE ARE MANY OTHERS OFF THE GRID)

1. a) What are the coordinates of the points?
b) Identify all possible locations for a $4^{\text {th }}$ point that would result in a parallelogram
c) How many points will result in a trapezoid (not including the 3 points from part b)?
2. a) Determine the slope between the two points.
b) Identify all possible locations (on the grid) for a third point that would result in a straight line.
c) Identify all possible locations for a third point that would result in a right angle triangle (there are 5 that are on the grid).

ANSWERS (I think!)

1. a) $(5,0),(1,6),(-3,-2)$
b) $(-7,4),(9,8),(1,-8)$
c) 12 points (not including 3 from b)
2. a) $\mathrm{m}=\frac{3}{5}$
b) $(-2,2)$ or $(8,-4)$
c) $(6,4),(9,9),(0,-6),(-4,10),(-10,0)$

Calculating Slope from Points or Graphs

- The slope of a line is how steep it is
- We can find the slope of a line connecting two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ by this formula:

$$
\text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
$$

Determine the slope.
a)

c) $(5,6) ;(8,2)$
d) $(-1,3) ;(5,7)$
b)

e) $(-5,0) ;(-1 ; 2)$
f) $(4,-2) ;(-5,-11)$

Calculate the slope between each pair of points. slope $=m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$

1) $(19,-16),(-7,-15)$
2) $(1,-19),(-2,-7)$
3) $(-4,7),(-6,-4)$
4) $(20,8),(9,16)$
5) $(17,-13),(17,8)$
6) $(19,3),(20,3)$
7) $(3,0),(-11,-15)$
8) $(19,-2),(-11,10)$
9) $(6,-10),(-15,15)$

Examples: Given a point on a line and the slope of the line, find another point on the line.

Given one point on a line and the slope, determine another point on the line.
a) one point: $(2,1)$ slope $=\frac{2}{3}$

b) one point: $(-1,3)$ slope $=-\frac{1}{2}$

e) one point: $(0,-3)$ slope $=-1$

f) one point: $(2,-1)$ slope $=-2$

i) one point: $(-1,-3)$ slope $=0$

j) one point: $(3,3)$
slope $=\frac{5}{3}$

c) one point: $(-3,-2) \quad$ slope $=\frac{5}{2}$

d) one point: $(2,0) \quad$ slope $=3$

g) one point: $(-2,3)$ slope $=-\frac{4}{3}$

h) one point: $(-2,-4)$ slope $=-\frac{1}{3}$

k) point: $(3,2)$ slope $=$ undefined

1) one point: $(3,4) \quad$ slope $=\frac{7}{4}$

1. Calculate the slope between each pair of points. State whether the slope are parallel, perpendicular, or neither.

a) $(4,5)$ and $(2,1)$	$(6,2)$ and $(10,10)$
b) $(5,1)$ and $(2,2)$	$(6,7)$ and $(8,2)$
c) $(2,3)$ and $(5,1)$	$(6,2)$ and $(0,-2)$
d) $(3,2)$ and $(8,2)$	$(-4,2)$ and $(-4,8)$

2. A line with a slope of $-\frac{15}{13}$ passes through the point $(-15,6)$. What is another point on the line? Explain.
3. Use slopes to determine if the following three points form a right angle.

a)	$L(-4,3)$	b)
	$P(-1,-3)$	
	$M(-2,-3)$	$Q(3,5)$
	$N(7,0)$	$R(-5,0)$

4. Do the following three points form a straight line? Justify using slopes.
$\mathrm{A}(13,18) \quad \mathrm{B}(-5,9) \quad \mathrm{C}(19,21)$
5. Point L lies on line segment KM as shown. What is the value of w ? Show your work/thinking.

6. If the line that passes through the point $(2,7)$ and $(a, 3 a)$ has a slope of 2 , what is the value of a ? Show your work/thinking.

CARDBOARD PRISMS - CALCULATING COSTS

1. You need the following amounts of material. Determine the cost of the cardboard prism. Show your work. You only need to pay for what you use.

ITEM: Cardboard	ITEM: Noodles	ITEM: Glue	ITEM: Labour
YOU NEED: $900 \mathrm{~cm}^{2}$	YOU NEED: 1400 mL	YOU NEED: 80 cm for edges 20 dabs (enough for 10 wall braces)	YOU NEED: 1.5 hours
COST: $5000 \mathrm{~cm}^{2}$ costs \$10	COST: 2L costs \$5	COST: A glue stick costs $\$ 0.25$ and can do 15 cm of edge or 4 dabs	COST: Worker makes $\$ 620$ for her 40 hour week

2. You need the following amounts of material. Determine the cost of the cardboard prism. Show your work. You only need to pay for what you use.

ITEM: Cardboard	ITEM: Noodles	ITEM: Glue	ITEM: Labour		
YOU NEED: $900 \mathrm{~cm}^{2}$	YOU NEED: 1400 mL	YOU NEED: 80 cm for edges 20 dabs (enough for 10 wall braces)	YOU NEED: 1.5 hours		
COST: A $50 \mathrm{~cm} \times 80 \mathrm{~cm}$ piece normally costs $\$ 16$, but it is on sale for 25% off	COST: A box measuring 12 in $\times 12$ in $\times 12$ in costs $\$ 7$	COST: A pound of glue sticks costs $\$ 15 . ~ E a c h ~ g l u e ~ s t i c k ~$ weighs $25 \mathrm{~g} . ~ A ~ g l u e ~ s t i c k ~ c a n ~$			
do 20 cm of edge or 8 dabs				\quad	COST: Builder is paid 40\%
:---					
more than Ontario's					
minimum wage					

> | Some common conversions. You can look up others as needed, but state any conversion rates you use. |
| :--- |
| 1 inch = 2.5 cm (approx.) |
| $1 \mathrm{~m}=100 \mathrm{~cm}$ |$\quad 1 \mathrm{~cm}=1 \mathrm{~mL} \quad 1 \mathrm{foot}=12$ inches $\quad 1 \mathrm{~kg}=1000 \mathrm{~g} \quad 1$ dozen = 12 items

	1.	2.
	Cardboard \$1.8	Cardboard \$2.7
ANSWERS	Noodles \$3.5	Noodles \$0.36
	Edge Glue \$1.33	Edge Glue \$3.3
	Dab Glue $\$ 1.25$	Dab Glue \$2.07
	Labour $\$ 23.25$	Labour \$29.40
	Total \$31.13	Total \$37.83

MPM1D CARDBOARD PRISMS - CALCULATING COST

Name:
The cardboard prism you need to build requires the following materials:

Cardboard	Noodles	Edge Glue	Dab Glue	Labour
$1200 \mathrm{~cm}^{2}$	1450 mL	85 cm	6 wall braces (each brace has 2 dabs)	Will take an hour and a quarter

Calculate the cost to build the prism for each of the 4 countries below. In all cases, you only need to pay for the materials you use (eg. If you only need half a stick of glue, you don't need to pay for the entire stick).

TANZANIA			
1. Cardboard \rightarrow Cardboard costs \$0.0025 per square cm	2. Noodles \rightarrow Noodles cost \$0.75 per L	3. Glue \rightarrow For edges: it costs 2 cents per c of edge \rightarrow For dabs: each dab costs 5 cent	4. Labour \rightarrow The builder is paid \$5/hour
MONGOLIA			
1. Cardboard \rightarrow Cardboard costs $\$ 1.50$ for a piece measuring 500 square cm	2. Noodles $\rightarrow 2 \mathrm{~L}$ of noodles cost \$3.50	3. Glue \rightarrow a glue stick costs $\$ 1.25$ \rightarrow each glue stick can do 50 cm of edge, or 10 dabs	4. Labour \rightarrow The builder is paid $\$ 275$ for their 40 hour work week
NICARAGUA			
1. Cardboard \rightarrow A piece of cardboard measuring $50 \mathrm{~cm} \times 80 \mathrm{~cm}$ costs $\$ 6.25$, but is on sale for 20% off.	2. Noodles \rightarrow The first half litre of noodles costs \$1.40. \rightarrow After that, noodles cost \$1.80 per litre	3. Glue \rightarrow A dozen glue sticks costs \$5.50 $\rightarrow 2$ glue sticks are needed to join 1 foot of edges \rightarrow One glue stick can be used for 25 dabs	4. Labour \rightarrow The builder insists on getting paid 20\% more than the Ontario minimum wage
FIJI			
1. Cardboard \rightarrow A cardboard sheet measuring 2 feet by 3 feet costs $\$ 25$ \rightarrow Add 15\% of the required cardboard amount for wastage	2. Noodles \rightarrow Noodles cost $\$ 5$ per kg \rightarrow One scoop of noodles weighs 40 g and has a volume of 74 mL	3. Glue \rightarrow Glue costs $\$ 6.60$ per pound \rightarrow a 7 g stick of glue is enough for 25 cm of edge, or 12 dabs	4. Labour \rightarrow The builder demands US\$500 for a 40 hour work week \rightarrow you still need to pay in Canadian \$

$1 \mathrm{inch}=2.5 \mathrm{~cm}$ (approx.)) $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$	1 foot = 12 inches	$1 \mathrm{~kg}=1000 \mathrm{~g}$	1 dozen $=12$ items
$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{~m}=3.3$ feet (approx.)	\$1 = 100 cents	$1 \mathrm{~L}=1000 \mathrm{~mL}$	1 pound $=454 \mathrm{~g}$

ANSWERS

Country	Cardboard $(\$)$	Noodles $(\$)$	Edge Glue (\$)	Dab Glue (\$)	Labour (\$)	Total (\$)
Tanzania	3	1.09	1.7	0.6	6.25	12.64
Mongolia	3.6	2.5375	2.125	1.5	8.59	18.35
Nicaragua	1.5	3.11	2.6	0.22	21	28.43
Fiji	6.39	3.92	0.35	0.1	20.31 (using exchange rate of 1.3)	31.07

